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ABSTRACT 

Separation axioms are among the most common and important and interesting concepts in 

topology as well as in bitopologies.  In this paper, we introduce 
r
Λ -sets and some weak 

separation axioms using 
r
Λ -open sets and 

r
Λ -closure operator. 
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INTRODUCTION AND PRELIMINARIES 

The separation axioms are important and interesting concepts among 
the topological spaces. Most of the definitions appeared simple, however the 

topological structure and properties might be complex and not always that 

easy to comprehend. For example, in digital topology, several spaces that 

fails to satisfy to be 1T which are important in the study of the geometric and 

topological properties of digital images. Caldas and Dontchev (2000) 

characterized the concepts of 
s

Λ -sets and V
s
-sets in topological spaces.  By 

using the regularly open and regularly closed sets these structures can also 
be extended to the bitopological spaces. For more details on regularly 
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pairwise open and closed sets, see for example, Fawakhreh and Kilicman 

(2002), Kilicman and Salleh (2007a), Kilicman and Salleh (2007b) and 

Kilicman and Salleh (2008). The purpose of this paper is to continue the 
research along these directions but this time by utilizing regularly-open sets.  

For details, see  Fawakhreh and Kilicman (2004) , Fawakhreh and Kilicman 

(2006) and  Kilicman and Salleh (2009). Caldas and Jafari (2004) introduced 

the notions of δΛ - 0 ,T  δΛ - 1,T and δΛ - 2T topological spaces. In this paper, 

we introduce some 
r

Λ -separation axioms in topological spaces. To define 

and investigate the axioms, we use the 
r

Λ -open sets. We call these axioms 

as 
r

Λ - 0 ,T  
r

Λ - 1,T and 
r

Λ - 2 .T
 

 

Throughout the paper (X, )τ (or simply X ) will always denote a 

topological space.  Let (X, )τ be a topological space and S
 
be a subset of X . 

Then S  is called regularly-open if S  = Int(cl S). The complement 
cS ( X S)= −  of a regularly-open set S  is called the regularly-closed set. The 

family of all regularly-open sets (resp. regularly-closed sets) will be denoted 

by RO(X, )τ  (resp. RC(X, )τ ). A subset S of X  is called Λ -set if it is the 

intersection of open sets containing S . The complement of Λ -set is called 

the V -set. 

 

 

r
Λ -SETS AND 

r
V -SETS 

Definition 2.1 Let S  be a subset of a topological space (X, ).τ
 
We define 

the sets r (S)Λ and rV (S)  as follows: 

                               {r (S) G G RO(X, )τΛ = ∩ ∈  and }S G⊆  

                                {rV (S) F F RC(X, )τ= ∪ ∈
 
and }S F⊇  

 

Lemma 2.2  For subsets S,Q  and iS , i I∈ , of a topological space 

(X, ),τ the following properties hold: 

 

(1) rS (S)⊆ Λ  

(2) r rQ S (Q) (S)⊆ ⇒ Λ ⊆ Λ  

(3) r r r( (S)) (S)Λ Λ = Λ  

(4) If  S RO(X, ),τ∈ then rS (S)= Λ  

(5) 
r i r i( S ) (S )

i I i I∈ ∈
Λ ∪ ⊇ ∪ Λ  
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(6) 
r i r i( S ) (S )

i I i I∈ ∈
Λ ∩ ⊆ ∩ Λ  

(7) c c

r r
(S ) (V (S))Λ =  

 

Proof. 

 

(1) Let 
r

x (S).∉Λ
 

Then there exists a regularly-open set G such that 

S G⊆ and x G.∉  Hence x S∉  and so 
r

S (S).⊆ Λ  

(2) Let 
r

x (S).∉Λ
 

Then there exists a regularly-open set G  such that 

S G⊆  and x G.∉
 

By our assumption Q S,⊆ Q G⊆ and hence 

r
x (Q).∉Λ  This shows (2). 

(3) From (1) and (2), 
r r r
(S) ( (S)).Λ ⊆ Λ Λ  If 

r
x (S),∉Λ then there exists a 

regularly-open set G such that S G⊆  and x G.∉  From the definition of 

r
(S),Λ

r
(S) GΛ ⊆ and hence

r r
x ( (S)).∉Λ Λ  

Therefore 
r r r
( (S)) (S).Λ Λ ⊆ Λ  This proves (3). 

(4) It directly follows from the definition of 
r
(S)Λ  and lemma 2.2(1). 

(5) From (2), 
r i r
(S ) (S)Λ ⊆ Λ  for each i I∈  where 

iS = S
i I∈
∪  and hence 

r i r r i(S ) (S) ( S ).
i I i I∈ ∈
∪ Λ ⊆ Λ = Λ ∪    

(6) From (2), 
r r i
(S) (S )Λ ⊆ Λ for each i I∈ where 

iS = S
i I∈
∩  and hence 

r r i i(S) ( S ) (S ).
i I i I∈ ∈

Λ = Λ ∩ ⊆ ∩  

(7) Let c

r
x (S ).∈Λ  Then for every regularly-open set G  containing 

cS ,x G.∈ Hence cx G ,∉  for every regularly-closed set cG S.⊆  

Therefore 
r

x V (S)∉  and hence c

r
x (V (S)) .∈  

Similarly, c c

r r
(V (S)) (S ).⊆ Λ  Hence (7) is proved. 

 

 By using the above lemma, we can easily verify the next result. 

 

Lemma 2.3  For subsets S,Q and 
i

S , i I,∈  of a topological space (X, ),τ  

the following properties hold: 

 

(1) 
r

V (S) S⊆  

(2) 
r r

Q S V (Q) V (S)⊆ ⇒ ⊆  

(3) 
r r r

V (V (S)) V (S)=  

(4) If S RC(X, ),τ∈ then 
r

S V (S)=  
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(5) 
r i r iV ( (S ) V (S )

i I i I∈ ∈
∩ ⊆ ∩  

(6) 
r i r iV ( S ) V (S )

i I i I∈ ∈
∪ ⊇ ∪  

 

In general, we have  
 

r r r
(S Q) (S) (Q)Λ ∩ ≠ Λ ∩ Λ  and 

r r r
(S Q) (S) (Q)Λ ∩ ≠ Λ ∪ Λ  as the 

following examples show. 
 

Example 2.4  

Let { }X = a,b,c and { } { }{ }= X, , a , b,c .τ φ  

Then { } { }{ }RO(X, ) = X, , a , b,c .τ φ Take { }S = b and { }Q = c .  

Then { }r
(S) = b,c ,Λ  { }r

(Q) = b,c ,Λ  { }r r
(S) (Q) = b,cΛ ∩ Λ  but 

r
(S Q) = .φΛ ∩  

 

Example 2.5  

Let { }X = a,b,c and { } { } { }{ }= X, , a , b , a, b .τ φ  

Then { } { }{ }RO(X, ) = X, , a , b .τ φ Take { }S = a and { }Q = b .  

Then { }r
(S) = a ,Λ { }r

(Q) = b ,Λ { }r r
(S) (Q) = a,bΛ ∪ Λ but 

r
(S Q) = X.Λ ∪  

 

Definition 2.6  A subset S of a space (X, )τ  is called a 

(1) regular- Λ -set, briefly 
r

Λ -set if 
r

S = (S)Λ  

(2) regular- V -set, briefly 
r

V -set if 
r

S = V (S)  

 

The set of all 
r

Λ -sets (resp.
r

V -sets) is denoted by 
r
(X, )τΛ (resp.

r
V ( , )).X τ   

 

Remark 2.7 Clearly regular- Λ -sets are Λ -sets and regular- V -sets are 

V -sets. Observe that a subset S is a regular- Λ -set if cS is a regular- V -set. 

Also observe that every regular- Λ -set is a regularly-open set. 
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Proposition 2.8 For a space (X, ),τ the following statements hold: 

 

(1) φ  and X are rΛ -sets and rV -sets 

(2) Every union of rV -sets is a rV -set 

(3) Every intersection of rΛ -sets is a rΛ -set. 

 
Proof. 

 

(1) It is obvious. 

(2) Let { }iS i I∈ be a family of rV -sets in (X, ).τ  Then i r iS V (S )= for each 

i I.∈ Let iS S .
i I=

= ∪  Then r r i r i iV (S) V ( S ) V (S ) S S.
i=I i=I i=I

= ∪ ⊇ ∪ = ∪ =  Also 

rV (S) S⊆ and hence S is a rV -set. 

(3) By using lemma 2.2(6) and 2.2(1), we get (3). 

 

The following example shows that union of rΛ -sets need not be a rΛ -set.  

 

Example 2.9  

Let { }X = a,b,c and { } { } { }{ }X, , a , , , .b a bτ φ=  

Then { } { }{ }RO(X, ) = X, , a , bτ φ and { } { }{ }r (X, ) = X, , a , .bτ φΛ  Here 

{ }a and { }b are rΛ -sets but { } { } { }a b a,b∪ = is not a rΛ -set. 

 
Similar to the previous case the following example shows that intersection of 

rV -sets need not be a rV -set. 

 

Example 2.10  

Let X and τ  be defined as in example 2.9.  

Then { } { }{ }rV (X, ) X, , b,c , a,c .τ φ=  Here { }b,c  and { }a,c are rV -sets but 

{ } { } { }b,c a,c c∩ = is not a rV -set. 

 
In order to achieve our purpose, we recall the following definition             

(Jain (1980)). 
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Definition 2.11 Let (X, )τ  be a topological space. Then the regular-closure 

of A, denoted by rcl(A) is defined by 

 

                   {rcl(A) = F F RC(X, )τ∩ ∈  and }F A⊃ . 

 

Lemma 2.12 Let (X, )τ  be a topological space and x X.∈  Then 

{ }ry ( x )∈Λ  if { }x rcl( y ).∈  

 

Proof.  

Suppose { }ry ( x ).∈ Λ Then for every regularly-open set { }G x ,⊇ y G.∈ If 

{ }x rcl( y ),∉ then H RC(X, )τ∃ ∈  such that { }y H⊂ and x H.∉  That implies 

x X - H,∈  X - H RO(X, )τ∈ and y X - H.∉ Take X - H = G.  

 

Then { }G RO(X, ), x Gτ∈ ⊆ and y G.∉  By this contradiction, we get 

{ }x rcl( y ).∈  Conversely, suppose { }x rcl( y ).∈ Then for every regularly-

closed set { }G y ,x G.⊃ ∈ If { }ry ( x ),∉ Λ  then H RO(X, )τ∃ ∈  such that 

{ }x H⊆  and y H.∉ Take X - H G.=  Then G RC(X, ), y Gτ∈ ∈ and x G.∉  

So there exists a regularly-closed set { }G y⊃  such that x G.∉  By this 

contradiction, we get { }ry ( x ).∉ Λ  

 

Theorem 2.13 The following statements are equivalent for any points x  

and y in a topological space (X, )τ  

  

(1) { } { }r r( x ) ( y )Λ ≠ Λ  

(2) { } { }rcl( x ) rcl( y )≠  

 

Proof.  

(1) (2) :→  Suppose { } { }r r( x ) ( y ).Λ ≠ Λ Then z X∃ ∈  such that 

{ }rz ( x )∈Λ and { }rz ( y ).∈Λ Therefore { }x rcl( z )∈  and { }y rcl( z ).∈  Hence 

{ } { }x rcl( z ) φ∩ ≠  and { } { }y rcl( z ) .φ∩ ≠  Since { }x rcl( z ),∈  

{ } { }rcl( x ) rcl( z )⊂  and hence { } { }y rcl( x ) .φ∩ ≠  Thus { } { }rcl( x ) rcl( y ).≠   
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(2) (1) :→  Suppose { } { }rcl( x ) rcl( y ).≠ Then z X∃ ∈  such that { }z rcl( x )∈  

and { }z rcl( y ).∉ Therefore { }rx ( z )∈Λ  and { }ry ( z ).∉Λ  So there exists a 

regularly-open set { }G z⊃ such that x G∈ and y G.∉  Hence { }ry ( x )∉Λ  

and hence { } { }r r( x ) ( y ).Λ ≠ Λ  

 

Lemma 2.14 Let (X, )τ  be a topological space and A RO(X, ).τ∈  Then 

{ }{ }r (A) = x X rcl( x ) A .φΛ ∈ ∩ ≠  

 

Proof.  

Let rx (A).∈Λ Since rA RO(X, ), A = (A).τ∈ Λ Also { }x rcl( x )∈ and hence 

{ }rcl( x ) A .φ∩ ≠ Conversely, let x X∈ such that { }rcl( x ) A .φ∩ ≠ If 

rx (A),∉Λ then there exists V RO(X, )τ∈  such that A V⊆ and x V.∉  Let 

{ }y rcl( x ) A.∈ ∩  Since { } { }ry rcl( x ), x ( y ).∈ ∈Λ  Therefore for every 

regularly-open set { }G y⊇  in (X, ), x G.τ ∈  Since y A∈  and 

A V, y V⊆ ∈  where V RO(X, ).τ∈  Hence x V.∈  By this contradiction, we 

get rx (A).∈Λ  

 

Recall that a topological space (X, )τ  is called a 0r - R  space (Jain (1980)) if 

for every regularly-open set { }G, x G rcl( x ) G.∈ ⇒ ⊂  

  

Theorem 2.15 For a topological space (X, ),τ the following properties are 

equivalent 

 

(1) (X, )τ is a 0r - R space 

(2) For any { } { }r, rcl( x ) ( x )x X∈ ⊂ Λ  

 

Proof. 

(1) (2) :→ Let { }ry ( x ).∉ Λ  Then there exists V RO(x, )τ∈  such that 

{ }V x , y V.⊇ ∉  Since x V RO(X, ),τ∈ ∈ by (1) { }rcl( x ) V.⊂  Hence 

{ }y rcl( x ).∉  Therefore { } { }rrcl( x ) ( x ).⊂ Λ  
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(2) (1) :→ Let V RO(X, )τ∈  and x V.∈  Suppose { }ry ( x ).∈ Λ  Then for 

every regularly-open set { }G x , y G.⊇ ∈  Hence y V∈  and hence 

{ }r ( x ) V.Λ ⊂  By (2), { }rcl( x ) V.⊂  Hence (X, )τ  is a 0r - R space. 

 

Result 2.16 If F  is regularly-open in (X, )τ  and x F,∈  then { }r ( x ) F.Λ ⊂  

 

Proof.  It directly follows from the definition of { }r ( x ).Λ  

 
 

rrrrΛΛΛΛ -CLOSED SETS AND ITS PROPERTIES 

Definition 3.1  

(1) Let A  be a subset of a space (X, ).τ  Then A  is called a rΛ -closed set 

if A = S C∩  where S  is a rΛ -set and C  is a closed set. 

(2) The complement of a rΛ -closed set is called a rΛ -open set. 

(3) The collection of all rΛ -open sets in (X, )τ  is denoted by r (X, ).τΛ Ο  

The collection of all rΛ -closed sets in (X, )τ  is denoted by rC(X, ).τΛ   

(4) A point x X∈  is called a rΛ -cluster point of A if for every rΛ -open 

set U  containing x,  A U .φ∩ ≠  

(5) The set of all rΛ -cluster points of A  is called the rΛ -closure of A  and 

is denoted by rΛ - cl(A). 

 

Let (X, )τ  be a topological space and A, B  and kA  where k I,∈  subsets of 

X. Then we have the following properties. 

 

Property 3.2 rA Λ - cl(A)⊂ . 

 

Proof. Let rx Λ - cl(A).∉  Then x  is not a rΛ -cluster point of A.  So there 

exists a rΛ -open set U containing x  such that A U = φ∩  and hence x A.∉  

 

Property 3.3 {rΛ - cl(A) = F A F∩ ⊂  and F is }r - closed .Λ  

 

Proof. Let rx Λ - cl(A).∉  Then there exists a rΛ -open set U  containing x  

such that A U = .φ∩  Take cF = U .  Then F  is r - closed, A FΛ ⊂  and 
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x F∉  and hence {x F A F∉∩ ⊂  and F  is }r - closed .Λ  Similarly, 

{rΛ - cl(A) F A F⊂ ∩ ⊂  and F  is }r - closed .Λ  

 

Property 3.4 If A B,⊂  then r rΛ - cl(A) Λ - cl(B).⊂   

 

Proof. Let rx Λ - cl(B).∉  Then there exists a r - openΛ set U  containing x  

such that B U = .φ∩  Since A U, A U = φ⊂ ∩  and hence x  is not a         

rΛ -cluster point of A.  Therefore rx Λ - cl(A).∉  

 

Property 3.5 A  is r - closedΛ  if rA = Λ - cl(A).  

Proof.  

Suppose A  is r - closed.Λ  Let x A.∉  Then c
x A∈  and c

A  is       
r

Λ -open. 

Take cA U.=  Then U  is a 
r

Λ -open set containing x  and A U = φ∩  and 

hence 
r

x Λ - cl(A).∉  By using Property 3.2, we get 
r

A Λ - cl(A).=  

Conversely, suppose 
r

A Λ - cl(A).=  Since {A F A F= ∩ ⊂  and F  is 

}r
- closedΛ  by Property 3.3, A  is 

r
Λ -closed. 

 

Property 3.6 
r
Λ - cl(A)  is 

r
Λ -closed. 

Proof.  

By using the Properties 3.2 and 3.4, we have 
r r r
Λ - cl(A) Λ - cl(Λ - cl(A)).⊂  

Let 
r r

x Λ - cl(Λ - cl(A)).∈  That implies x  is a 
r

Λ -cluster point of 

r
Λ - cl(A).  That implies for every 

r
Λ -open set U  containing 

r
x, ( - cl(A)) U .φΛ ∩ ≠  Let 

r
y Λ - cl(A) U.∈ ∩  Then y  is a              

r
Λ -

cluster point of A.  Therefore for every 
r

Λ -open set G  containing y,  

A G .φ∩ ≠  Since U  is 
r

Λ -open and y U, A U φ∈ ∩ ≠  and hence 

r
x Λ - cl(A).∈  Hence 

r r r
Λ - cl(A) = Λ - cl(Λ - cl(A)).  By Property 3.5, 

r
Λ - cl(A) is 

r
Λ -closed. 

 

Remark 3.7 

(1) X and φ are both 
r
Λ -open and 

r
Λ -closed. 

(2) By using the Properties 3.3 and 3.6, 
r
Λ - cl(A)  is the smallest 

r
Λ -

closed set containing A.  
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Property 3.8 If 
k

A  is 
r
Λ -closed for each k I,∈  then 

kA
k I∈
∩  is 

r
Λ -closed. 

Proof.  

Let 
kA = A

k I∈
∩  and 

r
x Λ - cl(A).∈  Then x is a Λ r-cluster point of A.  Hence 

for every  
r
Λ -open set U  containing x, A U .φ∩ ≠  That implies 

k( A ) U .
k I

φ
∈
∩ ∩ ≠  That implies 

k
A U φ∩ ≠  for each k I.∈  If x A,∉  then for 

some 
i

i I, x A .∈ ∉  Since 
i

A  is 
r
Λ -closed, 

i r i
A = Λ - cl(A )  and hence 

r i
x Λ - cl(A ).∉  Therefore x  is not a 

r
Λ -cluster point of 

i
A .  So there exists 

a 
r
Λ -open set V  containing x  such that 

i
A V = .φ∩  By this contradiction, 

x A.∈  Therefore 
r
Λ - cl(A) A⊂  and hence 

r
A = Λ - cl(A).  By using the 

Property 3.5, A  is 
r
Λ -closed. That is, 

kA
k I∈
∩  is 

r
Λ -closed. 

 

Remark 3.9 The union of 
r
Λ -closed sets need not be 

r
Λ -closed. For 

example, let { }X = a,b,c,d  and { } { } { }{ }= X, a , b , a,b .τ φ  Then { }a and { }b  

are 
r
Λ -closed but { } { } { }a b a,b∪ = is not a 

r
Λ -closed set. 

 

Property 3.10 If 
k

A  is 
r
Λ -open for each k I,∈  then  

kA
k I∈
∪  is 

r
Λ -open. 

Definition 3.11 Let (X, )τ  be a topological space, A X.⊂  Then 
r
Λ -kernel 

of A is defined by {r r
Λ - ker(A) = G G O(X, )τ∩ ∈Λ  and }A G .⊂  

Let (X, )τ  be a topological space and A,B  be subsets of X.  Let x, y X.∈  

Then we have the following lemmas. 
 

Lemma 3.12  
r

A Λ - ker(A)⊂  

 

Proof. Let 
r

x Λ - ker(A).∉  Then there exists 
r

V O(X, )τ∈Λ  such that 

A V⊂  and x V∉  and hence x A.∉  

 

Lemma 3.13 If A B,⊂  then 
r r
Λ - ker(A) Λ - ker(B).⊂  

 

Proof. Let 
r

x Λ - ker(B).∉  Then there exists 
r

G O(X, )τ∈Λ  such that 

B G⊂  and x G.∉  Since  A B, A G⊂ ⊂  and hence 
r

x Λ - ker(A).∉  
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Lemma 3.14 
r r r
Λ - ker(A) =Λ - ker(Λ - ker(A)).  

 

Proof. Let 
r r

x Λ - ker(Λ - ker(A)).∈  Then for every 
r
Λ -open set 

r
G Λ - ker(A), x G.⊃ ∈  Since 

r
A Λ - ker(A),⊂ for every 

r
Λ -open set 

G A, x G.⊃ ∈   

 

Hence 
r

x Λ - ker(A).∈  Therefore 
r r r
Λ - ker(Λ - ker(A)) Λ - ker(A).⊂  Also 

r r r
Λ - ker(A) Λ - ker(Λ - ker(A)).⊂ Hence

r r r
Λ - ker(A) Λ - ker(Λ - ker(A)).=  

 

Lemma 3.15 { }r
y Λ - ker( x )∈  if { }r

x Λ - cl( y ).∈  

 

Proof. { }r
y Λ - ker( x ) a∉ ⇔ ∃

r
Λ -open set { }V x⊃  such that y V a∉ ⇔ ∃  

r
Λ -open set { }V x⊃ such that { }y V = xφ∩ ⇔  is not a 

r
Λ -cluster point 

of { } { }r
y x - cl( y ).⇔ ∉ Λ  

 

Lemma 3.16 { }{ }r r
Λ - ker(A) = x Λ - cl( x ) A .φ∩ ≠   

 

Proof. Let 
r

x Λ - ker(A).∈ Then for every 
r
Λ -open set G A,x G.⊃ ∈  

Suppose { }r
Λ - cl( x ) A .φ∩ ≠  Then { }r

A X - (Λ - cl( x )).⊂  Take 

{ }r
V = X - (Λ - cl( x )).  Then V  is a 

r
Λ -open set containing A  and x V.∉  

By this contradiction, we get { }r
Λ - cl( x ) A .φ∩ ≠  Conversely, let 

x X∈ such that { }r
Λ - cl( x ) A .φ∩ ≠  Let { }r

y Λ - cl( x ) A.∈ ∩  Then y  is a 

r
Λ -cluster point of { }x .  Therefore for every 

r
Λ -open set U  containing 

y, { }U x φ∩ ≠  and hence x U.∈  If 
r

x Λ - ker(A),∉  then ∃  a 
r
Λ -open set 

V A⊃  such that x V.∉  Since y A,∈ V  is a 
r
Λ -open set containing y and 

x V.∉  By this contradiction, we get 
r

x Λ - ker(A).∈  

 

 

r k
Λ - T SPACES 

Definition 4.1 (X, )τ  is 
r 0
Λ - T  if for each pair of distinct points x, y  of 

X, ∃  a 
r
Λ -open set containing one of the points but not the other. 
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Theorem 4.2 (X, )τ  is 
r 0
Λ - T  if for each pair of distinct points x, y  of X,  

{ } { }r r
Λ - cl( x ) Λ - cl( y ).≠   

 

Proof.  
 

Necessity: Let (X, )τ  be a 
r 0
Λ - T  space. Let x, y X∈  such that x y.≠  Then 

∃  a 
r
Λ -open set V  containing one of the points but not the other, say 

x V∈ and y V.∉  Then cV  is a 
r
Λ -closed set containing y  but not x.  But 

{ }r
Λ - cl( y ) is the smallest 

r
Λ -closed set containing y.  Therefore 

{ } c

r
Λ - cl( y ) V⊂ and hence { }r

x Λ - cl( y ).∉ Thus { } { }r r
Λ - cl( x ) Λ - cl( y ).≠   

 

Sufficiency: Suppose x, y X, x y∈ ≠  and { } { }r r
Λ - cl( x ) Λ - cl( y ).≠  Let 

z X∈  such that { }r
z Λ - cl( x )∈  but { }r

z Λ - cl( y ).∉  If { }r
x Λ - cl( y ),∈ then 

{ } { }r r
Λ - cl( x ) Λ - cl( y )⊂ and hence { }r

z Λ - cl( y ).∈ This is a contradiction. 

Therefore { }r
x Λ - cl( y ).∉ That implies { } c

r
x (Λ - cl( y )) .∈  Therefore 

{ } c

r
(Λ - cl( y ))  is a 

r
Λ -open set containing x but not y.  Hence (X, )τ  is 

r 0
Λ - T .   

 

Definition 4.3 (X, )τ is 
r 1
Λ - T  if for any pair of distinct points x, y  of X,  

there is a 
r
Λ -open set U  in X  such that x U∈  and y U∉  and there is a 

r
Λ -open set V  in X  such that y U∈  and x V.∉   

 

Remark 4.4 Every 
r 1
Λ - T  space is 

r 0
Λ - T  space. But the converse need 

not be true. For example, let { }X = a,b,c  and { } { }{ }= X, , a , a, b .τ φ  Then 

(X, )τ  is 
r 0
Λ - T  space but not 

r 1
Λ - T  space. 

 

Theorem  4.5 For a space (X, )τ , the following are equivalent 

 

(1) (X, )τ  is 
r 1
Λ - T  

(2) For every { } { }r
x X, x - cl( x )∈ = Λ  

(3) For each x X,∈  the intersection of all 
r
Λ -open sets containing x  is 

{ }x .               
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Proof. 

 

(1) (2) :→  Suppose y x≠  in X.  Then ∃  a 
r
Λ -open set V  such that x V∈  

and y V.∉  If { }r
x - cl( y ),∈Λ then x  is a 

r
Λ -cluster point of { }y .  That 

implies for every 
r
Λ -open set U  containing { }x, y U .φ∩ ≠  Here V  is a    

r
Λ -open set containing x.  Therefore { }y V φ∩ ≠  implies y V.∈  This is a 

contradiction. Thus { }r
x - cl( y ).∉Λ  Hence for a point { }r

x, y - cl( x ).∉ Λ  

Thus { } { }r
x - cl( x ).= Λ  

 

(2) (3) :→  { }r
x - cl( y ) x∈Λ ⇔  is a 

r
Λ -cluster point of { }x ⇔ for every   

r
Λ -open set U  containing { } { r

x, x U x G G O(X, )φ τ∩ ≠ ⇔ ∈∩ ∈ Λ  and 

{ } }x G .⊂  Therefore { } {r r
- cl( x ) G G O(X, )τΛ = ∩ ∈Λ  and { } }x G .⊂ By 

(2), { } { r
x G G O(X, )τ= ∩ ∈Λ  and { } }x G .⊂  

 

(3) (1) :→  Let x y≠  in X.  By (3), and { }{ }x G .⊂  Hence ∃  one 
r
Λ -open 

set V  containing x  but not y.  Similarly, ∃  one 
r
Λ -open set U  containing  

y  but not x. Hence (X, )τ  is 
r 1
Λ - T .  

 

Theorem 4.6 A space (X, )τ  is 
r 1
Λ - T  if the singletons are 

r
Λ -closed 

sets.                               
 

Proof. Suppose (X, )τ  is 
r 1
Λ - T .  Let x X∈  and { }

c
y x .∈ Then x y≠  and 

so ∃  a 
r
Λ -open set  

y
U such that 

y
y U∈  but 

y
x U .∉  Therefore 

{ }
c

yy U x .∈ ⊂ That is, { } { { }
c c

yx = U y x∪ ∈  is rΛ -open. Hence { }x  is  

rΛ -closed. Conversely, let x, y X∈  with x y.≠  Then { }
c

y x∈  and { }
c

x  is 

a    rΛ -open set containing y  but not x.  Similarly, { }
c

y  is a rΛ -open set 

containing x  but not y.  Hence (X, )τ  is a r 1Λ - T  space. 

 

Definition 4.7 (X, )τ  is r 2Λ - T  if for each pair of distinct points x  and y  in 

X, ∃  a rΛ -open  set U  and a rΛ -open set V  in X  such that x U, y V∈ ∈  

and U V = .φ∩  
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Remark 4.8 Every r 2Λ - T  space is r 1Λ - T .  
 

Theorem 4.9 For a topological space (X, ),τ  the following are equivalent: 
 

(1) (X, )τ  is r 2Λ - T  

(2) If x X,∈  then for each y x,≠  there is a rΛ -open set U containing x  

such that ry - cl(U)∉Λ        

(3) For each { } { rx X, x -cl(U) U∈ = ∩ Λ  is a rΛ -open set containing }x  

 

Proof. 

(1) (2) :→  Let x X.∈  Then for each y x,≠ ∃  rΛ -open sets A  and B  such 

that x A, y B∈ ∈  and  A B = .φ∩  Then x A X - B.∈ ⊂  Take X - B = F.  

Then F  is rΛ -closed, A F⊂  and y F.∉  That implies {y F F∉∩  is          

rΛ -closed and } rA F - cl(A).⊂ = Λ  

 

(2) (1) :→  Let x, y X∈  and x y.≠  By (2), ∃  a rΛ -open set U containing 

x  such that ry - cl(U).∉ Λ  Therefore r ry X - ( - cl(U)), X - ( - cl(U))∈ Λ Λ  is   

rΛ -open and rx X - ( - cl(U)).∉ Λ  Also rU X - ( - cl(U)) = .φ∩ Λ  Hence 

(X, )τ  is r 2Λ - T .  

 

(2) (1) :↔  It is obvious. 
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